GRADE 100%

Sequence models & Attention mechanism

LATEST SUBMISSION GRADE

100%

1. Consider using this encoder-decoder model for machine translation.

1 / 1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False

✓ Correct

2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1 / 1 point

- Beam search will run more slowly.
- ✓ Correct
- Beam search will use up more memory.
 - ✓ Correct
- lacksquare Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
 - ✓ Correct
- Beam search will converge after fewer steps.
- 3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1/1 point

- True
- False

✓ Correct

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y\mid x)$.

1 / 1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript y'= "I'm building an AI system in Silicon Valley."

According to your model,

 $P(\hat{y} \mid x) = 1.09 * 10^{-7}$

 $P(y^* \mid x) = 7.21*10^-8$

Would you expect increasing the beam width B to help correct this example?

- **()** No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- \bigcirc No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- \bigcirc Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

✓ Correct

✓ Correct	
10. In trigger word detection, $x^{ct>}$ is:	1/1 point
lacktriangle Features of the audio (such as spectrogram features) at time t .	
\bigcirc The t -th input word, represented as either a one-hot vector or a word embedding.	
igcup Whether the trigger word is being said at time $t.$	
igcup Whether someone has just finished saying the trigger word at time $t.$	
✓ Correct	